Armstrong-Whitworth (Gloster) Meteor NF.14 WS807 at the Jet Age Museum

A small collection of pictures of Gloster Meteor NF.14 WS807 on display at the Jet Age Museum in Gloucestershire.
History: The Jet Age Museum
Photos: Tony Wilkins

WS807 was one of the last nightfighter models of Britain’s first frontline jet fighter. All the nightfighter versions were built by Armstrong-Whitworth as Gloster aviation had other commitments forcing them to outsource the work. The aircraft was built in 1954 and served in the RAF until 1967 when it was acquired by Meteor Flight based at Yalesbury. The aircraft is important to the Jet Age Museum because during its time in the RAF it provided the first experience of jet flight for the museum’s current chairman, John Lewer.

I took these pictures of the aircraft looking rather sorry for itself as it sat in open storage at the Jet Age Museum on July 11th 2015. Unfortunately these were the only pictures I could get as the aircraft is kept away from the public behind a barrier and when I asked could I cross it for some more angles I was politely told that were it not for Mr Insurance Man I would be more than welcome to. When I asked about whether it was to be restored or not I was told that it was on the to-do list but that other projects had a higher priority at the moment.

Meteor NF.15 WS807 (1)

Meteor NF.15 WS807 (2)


Gloster Meteor F.8 vs. Dassault Ouragon

Ouragon vs Meteor

The advent of Jet technology in the 1940s offered levels of aircraft performance not previously dreamed of. Britain’s first operational jet fighter was the Gloster Meteor, a twin engine design that was to all intents and purposes an aircraft of the piston engine era but powered by jet engines. Despite this the aircraft went on to have a successful career initially as a day fighter and then later as a fighter bomber, reconnaissance fighter and night fighter.

France’s aviation industry suffered under Nazi occupation. A number of French aircraft were pressed in to Luftwaffe service and the French aviation industry was turned towards supporting the Germans which subsequently made it a target for the RAF and later the USAAF. After the war a new aviation company appeared in France that would come to define French military aviation for the next sixty years – Dassault.

Headed by Marcel Dassault the company needed to break out quickly in to the new post-war military aviation scene if it intended to compete and so it had to embrace jet technology. With little or no experience with jet technology the company turned to the UK and imported a number of Rolls-Royce Nene engines with which to build a new fighter around. The result was the Dassault MD450 Ouragon (Hurricane); France’s first ever jet fighter aircraft.

At the time of the Ouragon’s introduction in 1952 the RAF had re-equipped with the penultimate variant of the Gloster Meteor, the F.8 model which was intended to keep the aircraft competent while the new generation of swept wing fighters was under development. In reality neither the Meteor F.8 nor the Ouragon were in the same class as the Soviet Union’s MiG-15 swept wing fighter but they were both still potent when faced with the remaining piston fighters or other straight wing jets such as the Republic F-84 and the Yakovlev Yak-15.

But which was the better fighter?


Gloster Metor F-8

The Meteor was a conventional straight wing design with a high mounted tailplane in order to keep it clear from the jetwash of the two engines. The engines themselves were mounted in pods midway along the length of the wings in an arrangement similar to a number of wartime piston engine aircraft. This reflected the play-it-safe philosophy taken in designing Britain’s first operational jet fighter. This arrangement naturally increased the drag factor although this was less than in piston engine aircraft of similar dimensions because the very nature of jet technology requires air to pass through the nacelle rather than over it.


The Ouragon on the other hand adopted what was becoming the standard shape for single engined jet fighters of the late 1940s. Like the Meteor the aircraft was of straight wing design, although they were significantly thinner than the British aircraft’s wings, with a high tailplane while air for the Nene engine was fed through a single gaping intake in the nose. This produced an aerodynamically efficient shape which was somewhat spoiled by the fitting of wingtip tanks to increase range. These also had a negative effect on roll-rate and pilots complained that the aircraft liked to break in to an uncommanded roll when in a tight turn.



Early jet engines were significantly underpowered and this lead to the first operational jet fighters, the Messerschmitt Me.262 and the Gloster Meteor, being fitted with two jet engines to give them the necessary thrust. The Mark.I Meteor was powered by two Welland turbojets each producing just 1700lbs thrust but as the technology matured the engines quickly became more powerful until the Meteor F.8 was developed equipped with Rolls-Royce Derwent 8 engines. These engines produced 3500lbs of thrust each, more than double what the Wellands produced.

Rolls Royce Nene

A little known fact is that it was actually a Frenchman who was the first to patent a gas turbine aero-engine. Maxime Guiliam designed what is now termed an axial flow turbojet and patented the design in 1921, seven years before Frank Whittle submitted his own design. However, as Whittle experienced in the UK, there was very little interest at the time due to the complexities involved in building the engine and a suitable aircraft. France’s capitulation meant that French jet development went out the window while Britain and Germany developed their own programs. This left them trailing behind in the immediate post-war era and so the French decided to use imported British engines while they began development of their own engines. Therefore the Ouragon was designed around a single Rolls-Royce Nene engine which developed 4990lbs thrust.


RAF Meteor F8

Stripped out (i.e. guns and ammunition removed as well as non-essential equipment) and the Meteor F.8 could tear through 640mph with relative ease. Fully loaded however and the airspeed tended to hover around the 600mph mark, still impressive when you consider that just three years earlier the fastest propeller driven aircraft were struggling to get beyond 400mph. The two Derwents allowed the aircraft to achieve a thrust-to-weight ratio of 0.45 and this allowed it to climb at around 7,000ft a minute to a service ceiling of 43,000ft.


The Ouragon topped out at 584mph in level flight although naturally French pilots tried to get more out of their aircraft by engaging in high speed dives. Doing this did achieve greater speeds, sometimes in excess of 600mph but often this overstressed the airframe. The Nene engine, despite being more powerful than a single Derwent, didn’t leave the Ouragon with a great deal of power having a thrust-to-weight ratio of around 0.31 under combat conditions. The gutsier Nene did however allow the Ouragon to keep pace with the Meteor when in a climb although the Meteor enjoyed a solid one thousand more feet in its service ceiling figures.

Please note; thrust-to-weight figures are determined by taking how much thrust is available compared to the full-up weight of a typical fighter mission. Adding ground attack weapons such as bombs and rockets decrease the thrust-to-weight ratio further however as fuel is expended the ratio becomes higher than it was just after take-off. Either way the Meteor still enjoyed a higher thrust-to-weight ratio than the Ouragon.



The Meteor’s design benefitted from experience gained in the years of World War II in terms of its gun armament. The aircraft was fitted with four Hispano Mk.V cannons, an arrangement that quickly became standard on all British fighters of the period as it offered the best compromise between weight, ammunition capacity and of course hitting power. The weapon could hurl a 20mm shell at 840m/s and achieve a rate of fire of 750rds/min. Mounted close together in the nose meant that the pilot could bring all four guns to bear on a single spot on a target at longer ranges thus increasing their destructive power. The gun did have a somewhat chequered history however and the earlier version of the weapon was prone to jamming. In fact the first two interceptions of V-1 Flying Bombs by earlier versions of the Meteor suffered from jammed guns forcing the pilots to resort to the wingtip method of bringing them down. The Mk.V in the Meteor F.8 had largely resolved the problem but it was still prone to jamming if not properly maintained.

Dassault Ouragon

The Dassault Ouragon was equipped with almost the same gun it being the French equivalent the MS.404. Like the Hispano Mk.V it was a 20mm weapon but featured a longer barrel than the British gun as well as other minor changes. This resulted in a weapon capable of dispensing a round with a velocity of 880m/s with a rate of fire of 700rds/min. This meant that the Ouragon’s guns were marginally harder hitting while the Meteor’s guns could get more rounds on to a target in the same period of time. Like the Meteor the guns were arranged close together in the nose of the aircraft which offered the same advantages.


Gloster Meteor F8 rockets

Both aircraft found themselves quite adept at ground attack when they passed their short primes as fighters. Again, recent war experience played a part in the air-to-ground configurations with the Meteor often adopting the powerful 60lb Rocket Projectile (RP) that had proven so effective against tanks and ships under the wings of wartime Bristol Beaufighters, De Havilland Mosquitoes and of course the Hawker Typhoon. The Meteor could carry up to sixteen of the weapons under its outboard wings or alternatively eight 5-inch HVAR rockets. Another air-to-ground weapon was the traditional unguided bomb and the Meteor could carry two 1,000lb bombs under its wings.


The Ouragon was designed with the ground attack role more in mind than the Meteor and it shows with the various weaponloads that could be carried on its four underwing pylons. In total the aircraft could carry aloft around 5,000lbs of weaponry, more than twice what the Meteor was carrying. Weapons included up to 16 105mm rockets or two Matra pods containing 18 SNEB 68mm rockets (this weapon’s dimensions prevented other weapons being carried on the other pylons).



In the air-to-air role the Meteor F.8 held a slight speed and altitude advantage over the Ouragon but where the Meteor surpasses the French type is in its more sprightly performance thanks to its greater thrust-to-weight ratio. What this means in combat is that the Meteor could recover any lost energy from a tight turning battle quicker than the Ouragon. Another distinct advantage the Meteor held over the Ouragon was its twin engine arrangement which meant the Meteor could be expected to be able to sustain more damage than the single engined Ouragon. One advantage the Ouragon pilot would enjoy would be that he would be shooting against a bigger target than the Meteor pilot and it would also be somewhat easier to locate the Meteor in the heat of battle.

As always we have to take in to consideration pilot training but from a technical point of view it is safe to say that these aircraft would be closely matched in combat and as long as their pilots played to their respective aircraft’s strengths then both aircraft would give a good account of themselves. In the ground attack role however the Ouragon does hold the edge although again the Meteor’s twin engine arrangement means that it would be less likely to be brought down by small arms fire than the Ouragon.

Gloster Meteor F.8 WH364 at the Jet Age Museum

A collection of pictures of Gloster Meteor F.8 on display at the Jet Age Museum in Gloucestershire.
History: The Jet Age Museum
Photos: Tony Wilkins

WH364 served with 601 Squadron between 1952 and 1957, then with the station flights at Safi, Takali and Idris. It last served with 85 Squadron, retiring in 1971 and going on the gate at RAF Kemble the following year. Twenty years later it was bought by Eddie and Paul Brown of Meteor Flight, but when they abandoned plans to get it flying again it was bought by former Gloster test pilot and Jet Age patron Peter Cadbury for the museum. Initially stored at Kemble, where it was restored for us by a team led by Paul Brown, it now has pride of place in the museum’s display hanger, Gloucestershire Airport, wearing its 601 Squadron red and black tail stripes.

Gloster Meteor (Reconnaissance Variants)


Despite the pace at which jet technology progressed in the immediate post-war years the RAF’s first jet fighter, the Gloster Meteor, remained quite a potent aircraft until the dawn of the 1950s when swept wing fighters took centre stage rendering it obsolete. With the vast majority of the world’s fighter aircraft still piston powered or subsonic jets, the Meteor with its relatively high speed and altitude performance was a logical platform for a reconnaissance aircraft to replace the wartime Supermarine Spitfire and De Havilland Mosquito reconnaissance aircraft.

There were several attempts to fit cameras in to the early variants of the Meteor but most of these came to nothing. One of the more promising was the Meteor FR.5 based on the Meteor F.4 but despite a prototype being built it was not pursued because advances in foreign jet technology were about to make the F.4 inadequate. However in 1948 the Meteor F.8 emerged powered by two Derwent 8 engines each producing 3,500lbs of thrust which gave the aircraft sufficient power to comfortably reach speeds in excess of 600mph and it was this airframe that was chosen as the basis for the first reconnaissance Meteor.

Meteor FR.9

Meteor FR9

The Meteor FR.9 was a minimum change approach to the requirement for a reconnaissance Meteor. A new nose section was designed that featured three observation windows (forward, port oblique and starboard oblique) for a single Williamson F24 camera. The F.24 was a proven reconnaissance system having been used operationally in the war by the Spitfires the Meteor was replacing. The camera was most effective in the low altitude role as its 5″ x 5″ format didn’t allow for the production of detailed enough photographs of wide areas as is required with the high altitude role. With only one camera onboard the Meteor’s F24 had to be ground aligned to the relevant window before take-off and this necessitated an extra amount of planning for missions to ensure that when the aircraft overflew the target the correct window was facing the area of interest.

Other than the camera installation the FR.9 was essentially a Meteor F.8 going as far as to retain the fighter’s four Hispano V 20mm cannons (these were sometimes faired over and the ammunition removed to squeeze an extra few miles an hour out of the aircraft). Just how similar the two versions were was highlighted by the Israelis who acquired a handful of second hand FR.9s and removed the camera equipment and windows to make more F.8s. The first of 126 Meteor FR.9s flew on the 22nd March 1950 and deliveries began in July of that year to No.208 Squadron based in Egypt protecting the Suez Canal. Meteor FR.9s primarily served in West Germany however in the low level reconnaissance role before being completely replaced by Supermarine Swifts by 1961.

  • Powerplant: 2x Derwent 8 (3,500lbs thrust each)
  • Max Speed: 592mph
  • Service Ceiling: 43,000ft
  • Length: 44ft 7in (13.59m)
  • Wingspan: 37ft 2in (11.32m)
  • Armament: 4x 20mm Hispano V cannons

Meteor PR.10


The next chapter in the story of the reconnaissance Meteors was the high altitude PR.10. Like the FR.9 the PR.10 was based on the Meteor F.8 but differed in two key areas; it was fitted with the longer span wings of the Meteor F.3 while the tail unit was taken from the Meteor F.4. Both of these features were included to improve high altitude performance and stability while the more powerful Meteor F.8’s Derwent 8 engines were retained as was the F.24 camera installation of the Meteor FR.9 making the PR.10 the Frankenstein of the Gloster Meteor family. In an effort to lighten the aircraft as much as possible to gain the maximum altitude the guns were deleted and the aircraft were unpainted save for the national markings and serial numbers (a fully painted MD-80 airliner for example has a staggering 155lbs of paint on it). All these efforts resulted in the PR.10 being able to achieve an altitude in excess of 47,000ft compared to the F.8/FR.9’s service ceiling of 43,000ft.

As the F.24 camera was more suited to low-to-medium level operations the Meteor PR.10 had two F.52 cameras in the rear fuselage for high altitude work. These were positioned in the ventral position to cover large areas below the aircraft and for this purpose produced larger photographs (8.5″x 7″) than the F.24 despite having a similar working mechanism.

Squadron deliveries of the PR.10 began in December 1950 and production totalled 59 airframes. In 1951 the aircraft were first flown in West Germany and during this time the aircraft took part in a number of provocative cross border flights that were only stopped when the Soviets began deploying the MiG-19 “Farmer” to intercept them. Even after this development the Meteor PR.10s continued to fly at the very edge of the border between East and West Germany photographing Warsaw Pact forces on the other side of the Iron Curtain until they were replaced by the superlative Canberra PR.9 in 1961.

  • Powerplant: 2x Derwent 8 (3,500lbs thrust each)
  • Max Speed: 541mph
  • Service Ceiling: 47,000ft
  • Length: 44ft 7in (13.59m)
  • Wingspan: 39ft 11in (12.18m)
  • Armament: None

Armstrong-Whitworth (Gloster) Meteor Night Fighters


In the immediate post-war period the RAF took very little interest in night fighter development. With the Luftwaffe destroyed and the lack of any credible night bomber threat from Eastern Europe the proven wartime De Havilland Mosquito force remained the RAF’s primary means of night bomber interception. Development of a jet powered night fighter was for the moment delayed until such a time a requirement was deemed necessary and the infantile technology had caught up to compensate for the weight penalty the night fighting equipment imposed.


Tu-4 “Bull”

Then on August 3rd 1947 military observers in Moscow were stunned to see what appeared to be B-29 Superfortresses taking part in the Aviation Day parade. In reality these were reverse engineered B-29s built as the Tupolev Tu-4 “Bull” and they caused a lot of concern in the west for it showed that the Soviets now had a genuine strategic bomber with very high speed and altitude performance. The west would later discover that the Tu-4 was inferior to the B-29 but nevertheless it allowed the Soviet aviation industry to leap-frog ahead and the technological lessons learned from the Tu-4 would be put in to more advanced designs later (in fact the Tu-16 “Badger” and the mighty Tu-95″ Bear both owe a lot of their fuselage design to the B-29/Tu-4). With the blockade of Berlin a year later and the start of the Cold War a confrontation with the Soviet Union was looking increasingly likely. If that happened the RAF’s Mosquito night fighters would prove inadequate against the Tu-4 and with more powerful jet engines now available it was decided to proceed with development of jet night fighters.

De Havilland Vampire NF.10

De Havilland Vampire NF.10

The RAF was not the first air force to contemplate using jet night fighters. The wartime Luftwaffe tested their advanced Messerschmitt Me 262 in the night fighter role producing the Me 262B-1a/U-1 and these scored a handful of kills against RAF night bombers. In the late 1940s the RAF decided that an interim jet powered night fighter based on the jets already in service should be developed pending the development and introduction of a dedicated new aircraft. The De Havilland company had already produced a jet powered night fighter by mating the radar, equipment and cockpit from the Mosquito to a Vampire airframe. This produced the Vampire NF.10 which was primarily for the export market but with an embargo in place against its main customer, Egypt, the RAF decided to take them on and this became the first operational RAF jet night fighter in 1951. The RAF was not overly impressed by it however and it was seen as a short term solution until a more powerful jet powered Gloster Meteor could be produced in sufficient numbers. This actually put the Vampire NF.10 in the unenviable position of being an interim aircraft until the “interim night fighter”, the Meteor, became available.

Meteor T.7

Meteor T.7

Gloster had begun work on a night fighter version of the Meteor as far back as 1946 when the RAF issued specification F44/46 calling for studies in to future night fighter designs. The natural starting point was the Meteor T.7 trainer as this already had provision for a second crewmember. When the RAF became serious about producing a jet night fighter Gloster decided that they were going to start from scratch with a new design that ultimately lead to the Gloster Javelin all-weather fighter series but the RAF needed a powerful night fighter in the interim and so Armstrong-Whitworth were commissioned to produce the Meteor night fighter. Armstrong-Whitworth had extensive experience building Meteors under a sub-contract with Gloster and so the tooling was largely in place. Gloster handed over their own studies and provided them with an early Meteor T.7 to serve as the prototype.

Meteor NF.11

Meteor NF11

To produce the NF.11 the T.7 was modified with an enlarged and lengthened nose to house the AI.10 radar set. This was the same radar set that had guided De Havilland Mosquitoes against the German Luftwaffe in World War Two and was essentially an American SCR-720 set developed for the Northrop P-61 Black Widow. The radar antenna spun around on its vertical axis through an entire 360 degrees 10 times every second while at the same time it slowly nodded up and down to provide altitude coverage between +50 and -20 degrees. This provided the observer with a 150 degree scan in front of the aircraft which produced a c-shaped image on his screen due to the transmitter switching off when it was pointed back towards the aircraft. In order to fit the motor that drove the scanner assembly a small bump under the nose was required and this became one of the distinguishing features of this variant. This set had a range of almost 10 miles against a bomber sized target when atmospheric conditions were good.

The radar and accompanying equipment in the rear cockpit added almost 3,000lbs to the weight of the aircraft and this required structural and aerodynamic changes to compensate. The wings were modified to feature the longer outer wings of the high altitude PR.10 variant. The original Meteor day fighters had four 20mm cannons in the nose but the fitting of the radar made it almost impossible to retain the guns here and so they were relocated to the wings just passed engines; a major modification as it meant the access doors had to be designed to help take the stress of high speed flight. The NF.11 had four Hispano V 20mm cannons each with 160 rounds of ammunition. One of the last features added to the aircraft was the fitting of a Meteor F.8 tail which was more streamlined than the T.7.

The modified T.7 prototype first flew in 1949 albeit without radar. The first full NF.11 flew on May 31st 1950 and the RAF was suitably impressed to order 200 examples with service entry beginning in 1951. Pilots transitioning from Mosquitoes were pleased with their new mount which offered height and speed advantages over their wartime aircraft. Pilots coming from day fighter Meteor squadrons were not so impressed however. The aircraft was significantly slower with its Derwent 8 engines taking it to just 578mph compared to the Meteor F.8 which topped out at 616mph. It was nevertheless capable for intercepting the Tu-4 which was seen as its main quarry and so the speed criticism was largely irrelevant.

One thing that was retained from the T.7 that was universally loathed by aircrew, groundcrew and enthusiasts alike was the heavily framed canopy. This was an exceptionally heavy component for its purpose that was awkward to handle and restricted the view outside the cockpit. It’s strange that Gloster adopted this design and no doubt newly qualified pilots were amazed at the view the actual fighter version afforded them after qualifying in the trainer.Gloster Meteor Fireflash NF.11 A Meteor NF.11 conducted the first launch of a British air-to-air missile in 1951 when a modified example fired the first Fairey Fireflash missile.

  • Powerplant: 2x Derwent 8 (3,700lbs thrust each)
  • Max Speed: 541mph
  • Service Ceiling: 40,000ft
  • Length: 49ft 7in (15.09m)
  • Wingspan: 39ft 11in (12.18m)
  • Armament: 4x 20mm Hispano V cannons

Meteor NF.12 

Meteor NF12

As the NF.11 was solidifying itself in service work was underway on a more capable version that featured an Anglicised version of the American APQ-43 radar in an even longer nose. Known as the AI.21 in British service this radar featured a 200kW transmitter gave a range of up to as much as 25 miles (40 km) when conditions permitted. It also included various beacon homing modes, as well as an air-to-surface mode for detecting ships. The Mk.21 differed from its APQ-43 forebear in that it was fitted with a British strobe unit and had variable pulse repetition frequency settings.

To help address the balance issues that resulted from this the tail was given a noticeable extension that had an almost crooked appearance. The new radar offered much improved signal processing over the AI.10 installed in the NF.11 but it was never able to supersede the older model and only 97 were built. To help compensate for the marginal weight increase more powerful Derwent 9 engines were fitted that produced a mere 100lbs of extra thrust each. The NF.12 entered service with the RAF in 1953.

  • Powerplant: 2x Derwent 9 (3,800lbs thrust each)
  • Max Speed: 541mph
  • Service Ceiling: 40,000ft
  • Length: 49ft 7in (15.09m)
  • Wingspan: 39ft 11in (12.18m)
  • Armament: 4x 20mm Hispano V cannons

Meteor NF.13 

The Meteor NF.13 also appeared in 1953 and was essentially a tropicalised version of the NF.11 for use by the Middle East Air Force. In the 1950s the RAF still had huge commitments in the region and with the Soviet Union taking more of an interest in supporting Marxist and anti-western uprisings the need for modern jet night fighters became more evident. The NF.13 was produced by the fitting of enlarged intakes for the Derwent 8 engines that helped compensate for the ambient heat in places such as Aden that reduced thrust in jet aircraft. The aircraft were also fitted with a radio compass to help with navigation over large featureless deserts and to improve crew comfort a cold air unit was fitted that blew cool air in to the cockpit. Forty examples of this version were delivered to the MEAF and they would serve in the Suez War in 1956.

Meteor NF.14

Meteor NF14

The Meteor NF.14 was the definitive night fighter variant of the Meteor. Effectively an updated NF.12 the aircraft finally dispensed with the loathed heavily framed canopy inherited from its Meteor T.7 forebear. Instead a “full blown” two piece canopy was developed that afforded the crew a superb view of the outside world. As well as saving a few pounds in weight and being easier to handle the new canopy was intended to help the crew spot their targets at night and observe their tracer fire more effectively to allow them to make corrections if needed. The aircraft retained the Anglicized APQ-43 radar set designated as the AI.21 from the NF.12.

Despite efforts to save weight the aircraft was at the end of its development life and the Derwent 9 engines couldn’t propel it any faster than 576mph under the best of conditions. By the time the NF.14 was making its presence known in frontline squadron service the Soviets were deploying the Tu-16 “Badger” bomber which was almost 70mph faster than the Meteor making interception nearly impossible. This fact served to spur on development of the Javelin and from 1954 the Meteor night fighter squadrons began to disband and re-equip with new types. The first models to go were the NF.11s which were drawn down between 1954 and 1955 followed by the tropicalized NF.13 variant which left frontline service in 1958. Strangely, two Meteor NF.11 squadrons found a new (albeit short) lease of life in the coastal defence role strafing surface vessels. In the remaining years the aircraft had left it primarily served abroad in areas where the threat level was not as sophisticated as in Europe such as the Far East although night fighter Meteors remained in Germany until 1960.

No.60 Squadron was the last Meteor night fighter squadron, disbanding at RAF Seletar, Singapore in 1961. It therefore also holds the accolade of being the last frontline Meteor fighter squadron in RAF service. In 1969 the Biafran government attempted to smuggle two Meteor NF.14s to the African breakaway republic to help in its war against Nigeria but the effort failed when one crashed in to the sea on its delivery flight while the other was impounded at Bissau in Portuguese Guinea.

  • Powerplant: 2x Derwent 8 (3,700lbs thrust each)
  • Max Speed: 576mph
  • Service Ceiling: 40,000ft
  • Length: 49ft 7in (15.09m)
  • Wingspan: 39ft 11in (12.18m)
  • Armament: 4x 20mm Hispano V cannons